
Final Exam

Mathematical Methods of Bioengineering

Ingeneŕıa Biomédica (INGLÉS)

14 of May 2019

The maximum time to make the exam is 3 hours. You are allowed to use a calculator and two
sheets with annotations.

Problems

1. Consider the function f(x, y, z) = (exyz, tan yz, xy) and let g : R3 −→ R be a differentiable
function that verifies ∇g(1, 1, 0) = (1, 1,−1).

(a) (1 point) If F = g ◦ f , compute ∇F (0, π4 , 1).

(b) (1 point) Find the tangent plane of F = 0 at (0, π4 , 1).

SOLUTION

(a) Using the chain rule we are able to calculate the gradient without knowing the explicit
expression of g:

∇F (x, y, z) = ∇(g ◦ f)(x,y,z) = ∇g[f(x, y, z)] ·Df (x, y, z) =

The derivative or Jacobian of f is:

Df (x, y, z) = Jf (x, y, z) =

yz · exyz xz · exyz xy · exyz
0 z(1 + tan2(yz)) y(1 + tan2(yz))
y x 0


Evaluating the expression at the given point we get:

Df (0, π/4, 1) =

π
4 0 0
0 2 π

2
π
4 0 0


On the other hand, f(0, π/4, 1)=(1,1,0). Then, ∇g[f(x, y, z)] = ∇g[(1, 1, 0)] = (1, 1,−1)
by the statement of the exercise. So finally plugging-in both result we conclude that:

∇F (0, π/4, 1) = ∇g[f(0, π/4, 1)] ·Df (0, π/4, 1) = (1, 1,−1)

π
4 0 0
0 2 π

2
π
4 0 0

 = (0, 2, π/2)
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(b) The implicit formula for the tangent plane of surface with equation F (x, y, z) = 0 at a
point P = (x0, y0, z0) is

∇F (x0, y0, z0) · (x− x0, y − y0, z − z0) = 0

Substituting for P = (0, π/4, 1) we get

(0, 2, π/2) · (x− 0, y − π/4, z − 1) = 0

Computing the dot product and simplifying, results in:

2y +
π

2
z = π

2. A laboratory that designs nasogastric tubes decides to model a tube of a Levine catheter.
Assume that the thickness of the tube is one and that can be modelled with the parametric
equations:

x(t) =
(√

2 · t, et, e−t
)
, 0 ≤ t ≤ 1 .

(a) (1 point) Compute the length of the catheter tube.

(b) (1 point) Suppose that through the tube is going to be administrated a medicament
with density:

f(x, y, z) =
1

y2z2

Compute the total quantity of medicament that can be accumulated inside the catheter
tube.
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Figure 1: Catheter tube.

Note: consider sinh t := et−e−t

2 , cosh t := et+e−t

2 . It may help you to know that cosh2 t =

e2t+e−2t+2
4 and that

d(sinh t)

dt
= cosh t.

SOLUTION

(a) The length of the catheter can be computed using the formula for the length of a curve.

x(t) =
√

2ti + etj + e−tk

x′(t) =
√

2i + etj− e−tk

‖x′(t)‖ =

√
(
√

2)2 + (et)2 + (−e−t)2 =
√

2 + e2t + e−2t = 2
√

cosh2 t = 2 cosh t

L(x) =

∫ 1

0

‖x′(t)‖dt =

∫ 1

0

2 cosh t dt = 2 sinh t|10 = et − e−t|10 = e− 1

e
= 2.3504
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(b) Integrating the density function over the catheter path we get the total mass of the
medicament on the tube. Then,

f(x(t)) =
1

(et)2(e−t)2
= 1

‖x′(t)‖ =
√

2 + e2t + e−2t = 2 cosh t∫
x

fds =

∫ 1

0

f(x(t))‖x′(t)‖ dt =

∫ 1

0

1 · 2 cosh tdt = 2.3504

3. Consider the surface shown in figure 2 and the region Dr0 = {(x, y) : x2 + y2 ≤ r20} where r0
is a constant value.

(a) (1 point) Find the volume under the surface over the region Dr0 .

(b) (1 point) Find the volume under the surface over all R2.

Figure 2: f(x, y) = 2(x2 + y2)e−x
2−y2 .

Observation: lim
r0→∞

Dr0 = R2.

Integration by parts:
∫
u · v′dx = u · v −

∫
u′ · v dx

(a) The volume under the surface is obtained integrating the surface:

V =

∫ ∫
Dr0

f(x, y)dA =

∫ ∫
Dr0

2(x2 + y2)e−x
2−y2dxdy

We observe that a change of variables to polar coordinates is necessary. Because Dr0 is
a disk of radius r0 can be described on polar coordinates as:

Dr0 = {(r, θ) : 0 ≤ r ≤ r0, 0 ≤ θ ≤ 2π}

Using the change of variables theorem for double integrals,

V =

∫ ∫
Dr0

f(x, y)dA =

∫ ∫
Dr0

f(r, θ) · r dA =

∫ ∫
Dr0

2(r2)e−r
2

r drdθ

=

∫ 2π

0

∫ r0

0

2r3e−r
2

drdθ
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To compute a integral of the type “
∫
xex dx” we integrate by parts,

u = r2 v = e−r
2

du = 2r dr dv = (−2r)e−r
2

dr

V =

∫ 2π

0

(∫
u · v′dr

)
dθ =

∫ 2π

0

(
u · v −

∫
u′ · v dr

)
dθ =

=

∫ 2π

0

(
− [r2e−r

2

|r00 −
∫ r0

0

2rer0 dr]
)
dθ = −2π · [r20e−r

2
0 + e−r

2

|r00 ] =

= −2π · [r20e−r
2
0 + e−r

2
0 − 1] = 2π · [1− r20e−r

2
0 − e−r

2
0 ]

(b) When we tend to infinite the radius of a disk we cover all R2, lim
r0→∞

Dr0 = R2. So,

∫ ∫
R2

f(x, y)dA = lim
r0→∞

∫ ∫
Dr0

f(x, y)dA = lim
r0→∞

2π · [1− r20e−r
2
0 − e−r

2
0 ] = 2π

4. Suppose that you go every day to work by subway. You walk to the same subway station,
which is served by two subway lines, both stopping near where you work. Each subway line
sends trains to arrive at the stop every 6 minutes, but the dispatchers (train drivers) begin
the schedules at random times.

(a) (0.5 points) Given the arrival time x minutes for the first line train, and y minutes for
the second line train, which is the function T (x, y) that give the waited time?

(b) (1 point) What is the average time you expect to wait for a subway train?

Note: You could model the waiting time for the two subway lines by using a point (x, y) in
the square [0, 6] × [0, 6].

Note: The average of function T over a region D ⊂ R2 is Tavg =
1

A(D)

∫ ∫
D

T (x, y) dxdy.

SOLUTION

(a) We catch the first train to arrive. If the first line train arrives first, we wait x and if
the second line train arrive first, we wait y. So the function T is:

T (x, y) = min(x, y) =

 x if x ≤ y

y if x > y

A representation of the function is shown in 3.

(b) In order to find the average time we use the formula for the average of a function,

Tavg =
1

V (D)

∫ ∫
D

T (x, y) dxdy. In our case, D is the square region [0, 6] × [0, 6].

Then, the area is A(D) = 6 · 6. Finally,

Tavg =
1

36

∫ 6

0

∫ 6

0

min(x, y) dxdy =
1

36

∫ 6

0

∫ 6

x

x dydx+
1

36

∫ 6

0

∫ x

0

y dydx = ... = 2

So the expected waited time is 2 minutes.
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Figure 3: T (x, y).

5. Consider the force field given by F(x, y) = (x+ y, x− y).

(a) (1.5 points) Prove that F is conservative and compute its potential function f(x, y).

(b) (1 points) Compute the line integral of F over the parabola y = x2 with x ∈ [0, 1].

(c) (0.5 points) Compute the line integral of F over the path delimited by the parabola
y = x2 and the line y = 1 with counterclockwise orientation.

SOLUTION

(a) F is a vector field of class C1 and R2 is a simply connected region. So, F = ∇f ⇐⇒
∇× F = 0.

∂N

∂x
=
∂M

∂y

1 = 1

Now we compute f(x, y).

(F1, F2) = ∇f =
(∂f
∂x
,
∂f

∂y

)
∂f

∂x
= x+ y −→ f(x, y) =

∫
x+ y dx =

x2

2
+ yx+ h(y)

Taking the partial of
(
−x

2

2
+ yx+ h(y)

)
respect of y we get the equation
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F2 =
∂
(x2

2
+ yx+ h(y)

)
∂y

x− y = x+ h′(y) −→ h(y) =

∫
−y dy = −y

2

2
+ C

Then, f(x, y) =
x2

2
− y2

2
+ yx+ C, C constant.

(b) Because F is conservative
∫
c
F ds = f(B)− f(A). Using that, A = (0, 02), B = (1, 12)

we get that
∫
c
F ds = f(1, 1)− f(0, 0) = 12/2− 12/2 + 1 · 1 + C − (0− 0 + 0 + C) = 1

(c) The path is closed as we can see in figure 4. We know that
∮
c
F ds = 0 for any closed

path.

Figure 4: Path from c).
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